
Improve the VM live migration process
In this study, we’ll aim at improving the VM live migration from a user experience
perspective. We’ll particularly focus on the live migration of VM with non-
shared storage (i.e, the source VM and the destination VM do not share the
same storage through a NFS technology like Ceph for example)

In order to enable the live migration for a VM, the user must specify a size.state
parameter for the instance root disk. This parameter is used for two things:

• In case of a stateful stop of the instance during the migration process,
the instance need to save its current memory pages (plus CPU state) to
the disk in order to be able to resume its execution after a stateful start.
This state dump is saved in the root disk config volume, thus justifying
the size.state parameter being at least equal to the amount of memory
allocated to the instance in order for the root disk config volume to be
able to store the state dump.

• Why do we need ‘at least’ the VM memory size and not an ‘equal’
amount for our size.state parameter? Well, the stored state of the VM
also contain other data. Indeed, during the live migration process, we
let QEMU mirror the storage device live-writes to a copy-on-write file: a
.qcow2 file. This file is written on the root disk config volume.

The following of this study will propose a strategy describing how we could
get rid of the size.state parameter and make the live migration process more
adaptive and user-friendly. In a second study, we’ll cover how we can get rid of
the migration.stateful parameter so that the user does not have to specify
any parameter at all to enable the live migration of its VM.

Strategy
Let’s have a new shared volume managed by LXD noted Ω with a fixed size
ΩS . This size ΩS is LXD specific and could be a modifiable server parameter
but will come with a chosen default value (e.g, 10GiB). The purpose of this
shared volume is to act as a temporary buffer in order to store the .qcow2
files of the running VM live migration processes (we could name this volume
migration-cow-buffer. This volume could be backed by ZFS by default).

I don’t think there would be a need to store any VM memory dumps in this
volume because each memory dump has a determined upper bound for its size
(unlike the live-writes .qcow2 file), so it is easy to resize the VM root disk at the
pre-migration phase to make sure the root disk config volume is big enough to
store the memory dump and the CPU state. We’d just need to resize the root
disk on the target node to its original size after the migration process is done.

The Ω volume would be partitioned into multiple sub-volumes noted ωi which
have a size Π(ωi) where Π is a partitioning function. We’ll come back to this

1



partitioning function a bit later; for now, let’s assume it exist. There would be a
1:1 mapping between the sub-volumes and the VM live migration processes so
that each ωi holds one .qcow2 file. Naturally, we’d have

∑n
i=1 Π(ωi) = ΩS . We

also note scow,i(t) the size of the .qcow2 file associated to the ωi sub-volume at
time t. We have ∀t, scow,i(t) ≤ Π(ωi) (if scow,i(t) is not ‘sharded’ - see section
3. 'Bins' overlapping).

Each ωi would have an associated throttle rate γi(t). The throttle
rate is a variable limit that will be applied to a QEMU storage device
through QMP (we can also use the -drive option with throttling.*
parameters to set IOPS limits on the disk. For example: -drive
file=/path/to/disk.img,throttling.bps-write=10485760,... would
limit the write bandwidth to 10 MB/s.)

It is important to note that the content of an ωi can start to be consumed only
after the disk content prior to the migration has been transferred. The remaining
size of this disk prior to the migration is noted pi(t). Until then, scow,i(t) is only
growing but its size is capped by Π(ωi) (if not ‘sharded’) and its growth a time
t is capped by γi(t).

Let’s note U(t) the current speed of the consuming link (the link between the
source and the destination nodes).

Objective: Our goal is to update the throttle rates γi(t) of each VM live
migration process so that all the .qcow2 files contained in the partitions of Ω
keep a decent IOPS without the total size ΩS being entirely filled up.

Π : The partitioning function
We need to design an ideal partitioning function, Π, for dynamically managing
sub-spaces (or shortly put, ‘bins’. We’ll use these two terms interchangeably)
within a shared buffer Ω for .qcow2 files during multiple live migrations. This
function needs to balance the requirements of each migration while ensuring the
total fixed size of ΩS is not exceeded. Let’s define a few principles and then
propose a partitioning strategy.

Principles

• Dynamic allocation: the partitioning function should allocate sub-spaces
based on current requirements and available space, adjusting as migrations
start and end.

• Fairness: each migration process should get a fair share of the buffer,
ideally based on its needs and the total available space.

• Buffer limitation: the sum of all partitions should never exceed ΩS .

• Non-reduction of allocated space: once a space is allocated to a
.qcow2 file, it can’t be reduced (this will lead to data loss / corruption).

2



Proposed function

Let N(t) be the number of ongoing migrations at time t. The function can be
defined as follows:

1. Starting a new migration - initial allocation:

When a new migration starts, allocate an initial partition size based on the
available space and the number of ongoing migrations. Π(ωnew) = Ωs

N(t)+1

2. Completed migration - reclaiming space:

When a migration completes (one of the ‘bin’ on the diagram above is no longer
needed because its underlying .qcow2 has been removed), the other ‘bins’ can
reclaim the space allocated to the completed migration. The reclaimed space is
then redistributed to the remaining ongoing migrations. The redistribution is
done by increasing the size of each remaining ‘bin’ by the same amount. The
amount is calculated by dividing the reclaimed space by the number of ongoing
migrations:

3. ‘Bins’ overlapping

3



Now, you are probably wondering what’s happening in the case where a new
migration causes a bin to be full or to be less than the associated scow,i(t) (this
is because a bin’s size is divided when a new migration process occurs). Or,
what’s happening if a migration is hogging its bin and the other migrations are
starving or just simply haven’t filled up their respective bins?

In such a situation, we won’t just give up and mark migration 0 as failed.
Instead, we’ll move the ∆(ω0) bit into a new bin (the least used one
in priority) that can withstand the move. If there is no other bin that can
handle the move, we divide ∆(ω0) in 2 and move the ∆(ω0)/2 parts in two bins
that can handle it. We keep dividing until we can move ∆(ω0). If we still can’t
we’ll mark migration 0 as failed. However, in practice, this should rarely happen
because we’d have already set γ0 to its minimum acceptable level (defined by
our SLAs. For example, we could set it to 10 kB/s).

Then the bin will be marked as full and no underlying data will be grown inside
it (until a migration process finishes and some space is reclaimed).

With this heuristic, we now have potentially bins holding different .qcow2 with
different γi. Let’s say that a the j-th bin holds two different type of data each
with a different throttling rate, noted γi and γj . Let’s note γi,j(t) = γi(t) + γj(t).
Because we are in the j-th bin, we chose to give a higher priority to the j-
th migration process, so that we avoid the i-th migration process to hog the
resources of other bins. This translates by having ∀t, γSLA ≤ γi(t) ≤ γj(t).

(How the different throttle rates will be adjusted is explained in the next section.)

During a completed migration phase, the reclaimed space is redistributed as
usual (detailed in step 2), but if a bin is ‘sharded’ into k parts (i.e, .qcow2 data
for a migration spans across multiple bins), we try to move the (k − 1)-smallest
shards into its original bin. If we can’t, we try to move the (k − 2)-smallest

4



shards into the original bin. We continue to diminish the number of to-be-moved
shards until we can do the move. If we still can’t, mark the migration (the
‘sharded’ one) as failed.

γi : the throttle rate (non-sharded behavior)
• For a non-sharded migration i, we propose the following heuristic to

adjust the throttle rate γi(t):

γi(t) = min(Π(ωi) exp(− scow,i(t)
(Π(ωi)−scow,i(t))+ϵ ) + ϵ, U(t)

N(t) )

Let’s explain the terms and the underlying idea behind this heuristic alongside
the following picture:

5



The red curve is modeling the left part of the min(.) operator and the blue curve
is modeling the right part.

• The blue curve is a simple, yet in practice, close to the reality model of a
network bandwidth (a transitive state followed by a steady state) divided
by N(t) which is constant most of the time (it is a ‘stair’ function to be
exact).

• The red curve show the evolution of the throttling rate with scow,i(t) in the

6



x-axis. At first, the throttling rate is around the value of Π(ωi) which is, in
this case, above the allocated network bandwidth U(t)/N(t) allocated for
this bin. Then we use the value of the blue curve to adjust the throttling
rate. The more the bin is filling up, the closest the red curve get to the blue
curve and eventually, exponential throttling rate will be applied without
reaching 0 because of ϵ = 0.01 (in MB/s).

So if the network bandwidth is large, the throttling rate will very quickly follow
the red curve law and will start to decrease in a somewhat linear way until the late
exponential behavior appears at around 60% of the bin size (auto-convergence
behavior).

If the network bandwidth is small, we won’t be able to transfer the .qcow2 data
at a fast pace anyway so the throttle rate will be in phase with the blue curve.

The interesting fact about that heuristic is that this behavior happens for
whatever the size of the bin (in the above picture, the bin size for this migration
is 100MB/s) because of the exponential term.

γi : the throttle rate (sharded behavior)
As explained in the partitioning function section, we can have a migration
process that is ‘sharded’ across multiple bins. We also spoke about some
priorities that some migrations have over others in the case of a bin being
‘sharded’. Let’s now explain how these priorities are expressed and explain how
we can adjust the throttle rate of a migration process that is ‘sharded’ across
multiple bins.

The chosen heuristic is surprisingly simple, because it is based on the same
principle as the non-sharded behavior though it contains a simple addition:

Let’s picture this situation:

We have 4 concurrent migration. In this scenario, because each migration evolved
differently, this translated to having 4 bins, among 2 of them are frozen.

• Migration 0 is sharded across 3 bins: its ‘main’ bin b0 (all the migrations
have at least one shard) and on b1 and b3.

7



• Migration 2 is also sharded across 3 bins: its ‘main’ bin b2 and on b1 and
b3.

You notice that the order of the shards is not the same for both migrations: In
b1, the green shard is on top of the orange one and on b3, the orange shard is on
top of the green one. Each time a shard is added to a bin, it is added on
top of the other shards. The bottom shard is the one with the highest
priority and then the order of priority is from bottom to top.

We introduce the integer αi ∈ [1..N(t)], the priority of the migration i. The
closer αi is to 1, the higher the priority of the migration i is.

• In b1, α0 = 3 and α2 = 2
• In b3, α0 = 2 and α2 = 3

We note Σαi, the mean priority of the migration process over the bins it is
sharded on (noted B) (including its ‘main’ bin):

Σαi =
∑

j∈B
αi(bj)

card(B)

Here, Σα0 = 1+2+3
3 = 2 and Σα2 = 1+2+3

3 = 2.

In this end, they have both the same mean priority. Now, this mean priority
will penalize its γi like the following:

γi(t) = min(Π(ωi) exp(− Σαi×scow,i(t)
(Π(ωi)−scow,i(t))+ϵ ) + ϵ, U(t)

N(t) )

As you can see, this is consistent with the former definition for a non-sharded
migration: indeed, for a non-sharded migration, Σαi = 1 and we fall back on
our feet. Wonderful!

Here is what a penalized γi looks like when it is sharded with a mean priority of
Σαi = 2:

8



• The black curve is the ‘penalized’ version of the red curve (the non-sharded
behavior). We can clearly see that the effect on the throttling rate is really
noticeable for Σαi = 2: after around 40% of the capacity of the sharded
bins (the non-frozen ones), the throttling rate has been halved compared
to the non-sharded behavior, letting an other migration whose the bin is
the main one, more room to fill it up.

9



Conclusion
Through the monitoring of the bytes being written on the .qcow2 files of con-
current live VM migrations and a live measurement of the network bandwidth
between the source and its destination nodes, we can adjust the IOPS throttle
rate of a VM’s disk devices. This buffer technology is network aware and adap-
tive to the host fixed resources while giving a fair share of live-write IOPS per
concurrent migration.

It’ll allow a LXD server to manage a centralized, hidden volume of a fixed size
(decided during the lxd init phase, or set by default to 10GiB with a possibility
to be increased / shrink by an admin) and to allow this scheduling logic to
automatically throttle any number of concurrent live migrations without the
user having to specify any size.state parameter.

10


	Improve the VM live migration process
	Strategy
	\Pi : The partitioning function
	Principles
	Proposed function

	\gamma_i : the throttle rate (non-sharded behavior)
	\gamma_i : the throttle rate (sharded behavior)
	Conclusion


